Exo- and endo-cyclopalladated compounds of N-benzylideneamines. Synthesis and X-ray structure of $\left[\mathrm{Pd}\left(1-\mathrm{CH}_{2}-2-\left(\mathrm{CH}=\mathrm{N}-2^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\} \mathrm{Br}\right]_{2}$

Jordi Barro, Jaume Granell, Daniel Sainz and Joaquim Sales
Departament de Quimica Inorgànica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

Mercè Font-Bardía and Xavier Solans
Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Martí i Franquès, s/n, 08028 Barcelona (Spain) (Received December 14, 1992)

Abstract

The action of $\mathrm{Pd}(\mathrm{AcO})_{2}$ on the imines $\mathrm{C}_{6} \mathrm{R}_{m} \mathrm{H}_{5-m} \mathrm{CH}=\mathrm{N}\left(\mathrm{CH}_{2}\right)_{p} \mathrm{C}_{6} \mathrm{R}_{n}^{\prime} \mathrm{H}_{5-n}$ has been studied. Five-membered endo-metallacycles were obtained from the imines $\mathbf{l a}\left(\mathrm{R}=4-\mathrm{Cl}, p=0, \mathrm{R}^{\prime}=2^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Me}_{3}\right)$ and $\mathbf{1 b}\left(\mathrm{R}=2-\mathrm{Cl}, p=0, \mathrm{R}^{\prime}=2^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Me}_{3}\right)$, by activation of a C(aromatic)- H bond and from the imine $1 \mathrm{c}\left(\mathrm{R}=2,6-\mathrm{Cl}_{2}, p=0, \mathrm{R}^{\prime}=2^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Me}_{3}\right.$), by oxidative addition of the ortho $\mathrm{C}-\mathrm{Cl}$ bonds to Pd^{0} formed in situ. Six-membered endo-metallacycles were obtained from the imine $1 d$ ($\mathrm{R}=2,4,6-\mathrm{Me} e_{3}, p=0$, $\mathrm{R}^{\prime}=2^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Me}_{3}$) by activation of a $C($ aliphatic $)$ - H bond. Imines $\mathbf{l e}\left(\mathrm{R}=2,6-\mathrm{Cl}_{2}, p=1, \mathrm{R}^{\prime}=2^{\prime}-\mathrm{Me}\right)$ and $\mathbf{l f}(\mathrm{R}=2,6-\mathrm{Cl} 2, p=1$, $\mathrm{R}^{\prime}=2^{\prime}-\mathrm{Cl}$ afforded five-membered exo-metallacycles, but the formation, in low yield, of the endo-compounds by oxidative addition of the ortho $\mathrm{C}-\mathrm{Cl}$ bonds was also observed. These results show the strong tendency of imines to form endo-cyclic compounds. Complexes $\left[\operatorname{PdBr}\left(\mathrm{C}^{-} \mathrm{N}\right)\left(\mathrm{PPh}_{3}\right)\right]$ can be obtained by the action of PPh_{3} on the new cyclometallated compounds prepared. [Pd\{1-CH2-2-(CH=N-2', $\left.\left.\left.4^{\prime}, 6^{\prime}-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\} \mathrm{Br}\right]_{2}$ crystallizes in the monoclinic space group $\mathrm{C} 2 / \mathrm{c}$ with $a=19.333(3)$; $b=13.511(2) ; c=14.092(2) \AA, \beta=96.94(2)$ and $Z=4$. The endo six-membered ring displays a half-skew-chair conformation, with the palladium atom out of the plane $(0.937 \AA)$ defined by the other atoms.

1. Introduction

Cyclopalladation is one of the classic ways to activate $\mathrm{C}-\mathrm{H}$ bonds in heterosubstituted organic molecules. The factors that influence the ease and manner of cyclopalladation reactions are not throughly understood but the following mechanism is widely accepted: (i) initial coordination of the ligand to the metal, and (ii) electrophilic attack of $\mathrm{Pd}^{\mathrm{II}}$ on the $\mathrm{C}-\mathrm{H}$ bond [1]. Moreover, there is a strong preference for five-membered cyclometallated compounds, and also preferential activation of C (aromatic)- H bonds compared to C (aliphatic)-H bonds, but recently, a few six-membered cyclopalladated compounds have been prepared by activation of C(aliphatic)-H bonds [2].

[^0]Schiff bases are suitable for the study of cyclometallation reactions since they can undergo metallation on different carbon atoms (polyfunctional). We have shown that imines have a strong tendency to form endo-cyclic cyclometallated compounds (when the $\mathrm{C}=\mathrm{N}$ bond is part of the metallacycle). This endo effect is so strong that the action of $\mathrm{Pd}(\mathrm{AcO})_{2}$ on the imine $2,4,6-$ $\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}=\mathrm{N}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, in refluxing acetic acid, affords the cyclometallated compound $\left[\mathrm{Pd}\left\{1-\mathrm{CH}_{2}-2-\right.\right.$ $\left.\left.\left(\mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) 3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\} \mathrm{AcO}\right]_{2}$, where the activation of a C(aliphatic)-H bond with formation of a six-membered endo-metaliacycle takes place in preference to the activation of a C (aromatic)- H bond and formation of a five-membered exo-metallacycle [2c]. Furthermore, the five-membered exo-metallacycle $\left[\mathrm{Pd}\left(2-\left(\mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}-2^{\prime}, 4^{\prime}, 6^{\prime}-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3}\right\}(\mathrm{AcO})\right]_{2}$ isomerizes to the six-membered metallacycle [$\mathrm{Pd}\{1-$ $\left.\left.\mathrm{CH}_{2}-2-\left(\mathrm{CH}=\mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right) 3,5-(\mathrm{Me})_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\} \mathrm{AcO}\right]_{2}[3]$.

This endo effect is not restricted to cyclopalladation reactions. Recently it has been shown that oxidative addition of ortho-halogenated imines to palladium(0) complexes affords preferentially the endo metallacycles [4]. The reaction between $\left[\mathrm{Pt}_{2} \mathrm{Me}_{4}\left(\mu-\mathrm{SMe}_{2}\right)_{2}\right]$ and N-benzylideneamines shows that the endo effect is also important for platinum compounds [5]. Moreover, the selective activation of $C-F$ bonds with formation of endo compounds takes place even in the presence of weaker $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{Cl}$ or $\mathrm{C}-\mathrm{Br}$ bonds, when $\left[\mathrm{Pt}_{2} \mathrm{Me}_{4}(\mu-\right.$ $\left.\left.\mathrm{SMe}_{2}\right)_{2}\right]$ reacts with $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{CH}=\mathrm{NCH}_{2}\left(2-\mathrm{XC}_{6} \mathrm{H}_{4}\right)[6]$.

In order to obtain additional information on the factors that influence the ease and mode of cyclometallation reactions we report here the action of $\mathrm{Pd}(\mathrm{AcO})_{2}$ on the N-benzylideneamines la-f, in which. in principle, different metallacycles might be obtained.

Cyclopalladation reactions usually afford dinuclear compounds $\left[\mathrm{Pd}\left(\mathrm{C}^{-} \mathrm{N}\right) \mathrm{X}\right][1]$, but there is also cvidence for the formation of trinuclear and even polynuclear species [7.8]. The characterization of such compounds is not easy and very often they are treated with phosphines or amines to afford mononuclear complexes. which are easily characterizable.

The molecular structure of such dinuclear or polynuclear compounds has not been extensively investigated. X-Ray diffraction studies of some acetato- and chloro-bridged complexes have been reported [9], and there is also one bromo-bridged cyclometallated complex, whose crystal structure has been determinated [10]. Here we report the X-ray crystal structure of the bromo-bridged complex $\left[\mathrm{Pd}\left(1-\mathrm{CH}_{2}-2-\left(\mathrm{CH}=\mathrm{N}-2^{\prime}, 4^{\prime}, 6^{\prime}-\right.\right.\right.$ $\left.\left.\left.\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\} \mathrm{Br}\right]_{2}$.

2. Results and discussion

Imines 1a-f were treated with $\operatorname{Pd}(\mathrm{AcO})_{2}$, in a $2: 1$ ratio, in anhydrous acetic acid under reflux. Subsequent treatment of the residues with LiBr in ethanol afforded the bromo-bridged cyclometallated compounds 2 (see Scheme 1). Five-membered endo-metallacycles were obtained from the imines $\mathbf{1 a}, \mathbf{b}$ by activation of a C(aromatic) -H bond. These imines might also afford a five-membered exo-metallacycle by activation of a C(aliphatic) -H bond, but their formation was not observed. Imine 1c, with two chlorine substituents in the ortho positions of the benzal ring, gave the fivemembered endo-metallacycle, and no five-membered cxo-metallacycle was observed. The formation of the endo-cyclic compound with this imine can be explained by oxidative addition of one of the ortho $\mathrm{C}-\mathrm{Cl}$ bonds to palladium(0), formed by reduction in situ of Pd^{11} by the imine. This is a well known process, and has been proposed to occur in the catalytic arylation from ole-

Scheme 1, (i) $\mathrm{Pd}(\mathrm{AcO})_{2}$, in refluxing acetic acid. (ii) $\mathrm{LiBr}, \mathrm{EtOH}$, room temperature
fines and organic halides [11]. The six-membered endo-metallacycle was obtained from the imine ld by activation of a C(aliphatic)- H bond in preference to the formation of a five-membered exo-metallacycle, also by activation of a Claliphatic)-H bond. This shows that the size of the metallacycle is not the decisive factor in the cyclometallation reactions of imines, and that the endo effect is important in deciding the metalfation position. The formation of five-membered exometallacycles was observed from the imines $1 e$ and if. A small quantity of the endo-cyclic compounds was also obtained, by oxidative addition of the ortho $\mathrm{C}-\mathrm{Cl}$ bonds of these imines to Pd^{10} formed in situ, and it was possible to isolate and purify the endo-derivative 2 e . The exo-compounds obtained contain the imine in the Z form (see below) although either isomer, E or Z, can give exo-derivatives. As the free imine is in the E form, $E-Z$ isomerization occurs during the cyclometallation reaction.

2.1. Reaction with PPh_{3}

The action of PPh_{3} on the cyclometallated compounds $2[\mathrm{PdBr}(\mathrm{C} \mathrm{N})]_{\text {, }}$, in a $2: 1$ molar ratio was studied to obtain more soluble easily characterizable mononuclear complexes. Compounds $\mathbf{3}[\mathrm{PdBr}(\hat{\mathrm{C}} \mathrm{N})$ -
$\left(\mathrm{PPh}_{3}\right)$] were obtained in good yields in all cases. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (Table 1) show that the phosphine is trans to the imine nitrogen. ${ }^{1} \mathrm{H}$ NMR spectra of these compounds also confirm this arrangement (see below).

2.2. Proton NMR spectra

Proton NMR spectra (Table 1) afford conclusive evidence of the palladation position. In compounds containing PPh_{3}, the aromatic protons of the palladated aromatic ring in the five-membered metallacy-

TABLE 1. Proton ${ }^{\text {a }}$ and ${ }^{31} \mathrm{P}^{\text {b }}$ NMR data

Compound	Aromatic	$\mathrm{HC}=\mathrm{N}$, aliphatic	${ }^{31} \mathrm{P}$
2a	$\begin{aligned} & 7.18\left(\mathrm{~d}(1 \mathrm{H}),{ }^{3} J(\mathrm{HH})=8.3, \mathrm{H}_{5}\right) \\ & 7.0-6.90\left(\mathrm{brm}(4 \mathrm{H}), \mathrm{H}_{2}, \mathrm{H}_{4}, \mathrm{H}_{7}, \mathrm{H}_{9}\right) \end{aligned}$	$\begin{aligned} & 7.73(\mathrm{~s}(1 \mathrm{H}), \mathrm{HC}=\mathrm{N}) \\ & 2.33-2.23\left(\mathrm{br} \mathrm{~m}(9 \mathrm{H}), \mathrm{Me}_{6}, \mathrm{Me}_{8}, \mathrm{Me}_{10}\right) \end{aligned}$	
3a	$\begin{aligned} & 7.80-7.30\left(\mathrm{br} \mathrm{~m}(16 \mathrm{H}), \mathrm{H}_{5}, \mathrm{PPh}_{3}\right) \\ & 6.95\left(\mathrm{dd}(1 \mathrm{H}),{ }^{4} J(\mathrm{HH})=7.9,{ }^{4} J(\mathrm{HH})=1.9, \mathrm{H}_{4}\right) \\ & 6.86\left(\mathrm{~s}(2 \mathrm{H}), \mathrm{H}_{7}, \mathrm{H}_{9}\right) \\ & 6.30\left(\mathrm{dd}(1 \mathrm{H}),{ }^{4} J(\mathrm{HP})=5.9,{ }^{4} J(\mathrm{HH})=1.9 \mathrm{H}_{2}\right) \end{aligned}$	$\begin{aligned} & 8.05\left(\mathrm{~d}(1 \mathrm{H}),{ }^{4} J(\mathrm{IIP})=7.5, \mathrm{HC}=\mathrm{N}\right) \\ & 2.32\left(\mathrm{~s}(6 \mathrm{H}), \mathrm{Me}_{6}, \mathrm{Me}_{10}\right) \\ & 2.26\left(\mathrm{~s}(3 \mathrm{H}), \mathrm{Me}_{\mathrm{s}}\right) \end{aligned}$	40.98
2b	$7.0-6.70$ (br m (5 H) , $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{H}_{7}, \mathrm{H}_{9}$)	$\begin{aligned} & 8.15(\mathrm{~s}(1 \mathrm{H}), \mathrm{HC}=\mathrm{N}) \\ & 2.35-2.20\left(\mathrm{br} \mathrm{~m}(9 \mathrm{H}), \mathrm{Me}_{6}, \mathrm{Me}_{8}, \mathrm{Me}_{10}\right) \end{aligned}$	
3b, 3c	$\begin{aligned} & 8.00-7.20\left(\mathrm{br} \mathrm{~m}(15 \mathrm{H}), \mathrm{PPh}_{3}\right) \\ & 6.90\left(\mathrm{~d}(1 \mathrm{H}),{ }^{3} J(\mathrm{HH})=7.4, \mathrm{H}_{4}\right) \\ & 6.85\left(\mathrm{~s}(2 \mathrm{H}), \mathrm{H}_{7}, \mathrm{H}_{4}\right) \\ & 6.55\left(\mathrm{t}(1 \mathrm{H}),{ }^{3} J(\mathrm{HH})=7.4, \mathrm{H}_{3}\right) \\ & 6.34\left(\mathrm{t}(1 \mathrm{II}),{ }^{3} . \mathrm{H}(\mathrm{HH})={ }^{4} J(\mathrm{HP})=7.4, \mathrm{H}_{2}\right) \end{aligned}$	$\begin{aligned} & 8.60\left(\mathrm{~d}(1 \mathrm{H}),{ }^{4} J(\mathrm{HP})=7.4, \mathrm{HC}=\mathrm{N}\right) \\ & 2.36\left(\mathrm{~s}(6 \mathrm{H}), \mathrm{Me}_{6}, \mathrm{Me}_{10}\right) \\ & 2.27\left(\mathrm{~s}(3 \mathrm{H}), \mathrm{Me}_{8}\right) \end{aligned}$	42.18(s)
2d	$\begin{aligned} & 7.0\left(\mathrm{~s}(1 \mathrm{H}), \mathrm{H}_{4}\right) \\ & 6.90\left(\mathrm{~s}(2 \mathrm{H}), \mathrm{H}_{7}, 1 \mathrm{H}_{9}\right) \\ & 6.81\left(\mathrm{~s}(1 \mathrm{H}), \mathrm{H}_{2}\right) \end{aligned}$	$\begin{aligned} & 7.79(\mathrm{~s}(1 \mathrm{H}), \mathrm{HC}=\mathrm{N}) \\ & 3.28\left(\mathrm{~s}(2 \mathrm{H}), \mathrm{CH}_{2}-\mathrm{Pd}\right) \\ & 2.41\left(\mathrm{~s}(311), \mathrm{Mc}_{5}\right) \\ & 2.35-2.20\left(\mathrm{brs}(9 \mathrm{H}), \mathrm{Me}_{6}, \mathrm{Me}_{8}, \mathrm{Me}_{10}\right) \\ & 2.17\left(\mathrm{~s}(3 \mathrm{H}), \mathrm{Me}_{3}\right) \end{aligned}$	
3d	$\begin{aligned} & 7.70-7.20\left(\mathrm{br} \mathrm{~m}(15 \mathrm{H}), \mathrm{PPh}_{3}\right) \\ & 6.94\left(\mathrm{~s}(2 \mathrm{H}), \mathrm{H}_{7}, \mathrm{H}_{9}\right) \\ & 6.71\left(\mathrm{~s}(1 \mathrm{H}), \mathrm{H}_{4}\right. \\ & 5.68\left(\mathrm{~s}(1 \mathrm{H}), \mathrm{H}_{2}\right) \end{aligned}$	$\begin{aligned} & 8.05\left(\mathrm{~d}(1 \mathrm{H}),{ }^{4} J(\mathrm{HP})=12.4, \mathrm{IIC}=\mathrm{N}\right) \\ & 2.92\left(\mathrm{~d}(2 \mathrm{H}),{ }^{3} J(\mathrm{HP})=11.9, \mathrm{CH}_{2}-\mathrm{Pd}\right) \\ & 2.57\left(\mathrm{~s}(6 \mathrm{H}), \mathrm{Me}_{6}, \mathrm{Me}_{10}\right) \\ & 2.33\left(\mathrm{~s}(3 \mathrm{H}), \mathrm{Me}_{8}\right) \\ & 2.29\left(\mathrm{~s}(3 \mathrm{H}), \mathrm{Me}_{5}\right) \\ & 2.09\left(\mathrm{~s}(3 \mathrm{H}), \mathrm{Me}_{3}\right) \end{aligned}$	36.89(5)
3 e (exo)	$\begin{aligned} & 7.70-7.20\left(\mathrm{br} \mathrm{~m}(18 \mathrm{H}), \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{PPh}_{3}\right) \\ & 6.70-6.55\left(\mathrm{br} \mathrm{~m}(1 \mathrm{H}), \mathrm{H}_{9}\right) \\ & 6.35-6.25\left(\mathrm{br} \mathrm{~m}(2 \mathrm{H}), \mathrm{H}_{7}, \mathrm{H}_{8}\right) \end{aligned}$	$\begin{aligned} & 9.77\left(\mathrm{~d}(1 \mathrm{H}),{ }^{4} J(\mathrm{HP})=5.22, \mathrm{HC}=\mathrm{N}\right) \\ & 4.86\left(\mathrm{br} \mathrm{~s}(2 \mathrm{H}), \mathrm{CH}_{2}-\mathrm{N}\right) \\ & 2.07\left(\mathrm{~s}(3 \mathrm{H}), \mathrm{Me}_{10}\right) \end{aligned}$	42.61(s)
3e (endo)	$\begin{aligned} & 7.80-7.20\left(\mathrm{br} \mathrm{~m}(18 \mathrm{H}), \mathrm{H}_{7}, \mathrm{H}_{8}, \mathrm{H}_{9}, \mathrm{PPh}_{3}\right) \\ & 6.75\left(\mathrm{~d}(1 \mathrm{H}),{ }^{3} J(\mathrm{HH})=7.1 \mathrm{H}_{6}\right) \\ & 6.60\left(\mathrm{~s}(1 \mathrm{H}),{ }^{3} J(\mathrm{HH})=7.3, \mathrm{H}_{4}\right) \\ & 6.40\left(\mathrm{t}(1 \mathrm{H}),{ }^{3} J(\mathrm{HH})=7.3, \mathrm{H}_{3}\right) \\ & 6.25\left(\mathrm{t}(1 \mathrm{H}),{ }^{3} J(\mathrm{HH})={ }^{4} J(\mathrm{HP})=7.4, \mathrm{H}_{2}\right) \end{aligned}$	$\begin{aligned} & 8.00\left(\mathrm{~d}(1 \mathrm{H}),{ }^{4} J(\mathrm{HP})=7.5, \mathrm{HC}=\mathrm{N}\right) \\ & 5.40\left(\mathrm{br} \mathrm{~s}(2 \mathrm{H}), \mathrm{CH}_{2}-\mathrm{N}\right) \\ & 2.35\left(\mathrm{~s}(3 \mathrm{H}), \mathrm{Me}_{10}\right) \end{aligned}$	42.8(s)
21	7.50-6.80 (br m (6 H), $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{H}_{7}, \mathrm{H}_{8}, \mathrm{H}_{9}$)	$\begin{aligned} & 9.05(\mathrm{brs}(1 \mathrm{H}), \mathrm{HC}=\mathrm{N}) \\ & 4.87\left(\mathrm{~s}(2 \mathrm{H}), \mathrm{CH}_{2}-\mathrm{N}\right) \end{aligned}$	
3 f	7.70-7.20 (hrm (18H), $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{PPh}_{3}$) $6.70-6.55\left(\mathrm{br} \mathrm{m}(1 \mathrm{H}), \mathrm{H}_{9}\right)$ $6.40-6.30(\mathrm{br} \mathrm{m} \mathrm{(2H}), \mathrm{H}_{7}, \mathrm{H}_{8}$)	$\begin{aligned} & 9.73(\mathrm{br} \mathrm{~m}(1 \mathrm{H}), \mathrm{HC}=\mathrm{N}) \\ & 5.04\left(\operatorname{br~s}(2 \mathrm{H}), \mathrm{CH}_{2}-\mathrm{N}\right) \end{aligned}$	41.98(s)

${ }^{a}$ In CDCl_{3}; chemical shifts in ppri with respect to internal SiMe_{4}; coupling constants in Hz ; numbering as in figure. ${ }^{\text {b }}$ in ClICl_{3}; chemical shift in ppm with respect to $85 \% 11_{3} \mathrm{PO}_{4}$.

Fig. 1. Molecular structure of 2 d .
cles $\mathbf{3 a}, \mathbf{b}, \mathbf{c}, \mathbf{e}, \mathbf{f}$ and those of the palladated benzylic unit in the six-membered metallacycle $\mathbf{3 d}$, resonate at high field. This could be caused by a phosphine phenyl ring, suggesting a cis arrangement of the phosphine and the metallated carbon atom and, in consequence, a trans arrangement of phosphorus and nitrogen atoms.

The chemical shift of methyne protons is useful for the structural characterization of cyclopalladated complexes. This signal appears shifted to high field (0.3-1.2 ppm) relative to that of the free imine in the endo-de-

TABLE 2. Summary of crystallographic data for 2d

Formula	$\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{Br}_{\sim} \mathrm{N}_{7} \mathrm{Pu}$
Mol wt	901.4
System	monoclinic
Space group	$C 2 / \mathrm{c}$
$a(\AA)$	$19.333(3)$
$b(\mathrm{~A})$	$13.511(2)$
$c(\mathrm{~A})$	14.092(2)
$\beta\left({ }^{\circ}\right)$	$96.94(2)$
$V\left(\mathrm{~A}^{3}\right)$	36.54(1)
$d_{\text {cialic }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.638
Z	4
$F(000)$	1792.0
Crystal size (mm^{3})	$0.07 \times 0.07 \times 0.1$
$\mu(\mathrm{MoK} \alpha)\left(\mathrm{cm}^{-1}\right)$	33.09
$\lambda(\mathrm{MoK} \alpha)(\mathrm{A})$	0.711669
7 (e)	25
Reflections collected	2678
R	0.052
R_{w}	0.056

TABLE 3. Bond distances (A) for 2d

$\overline{\mathrm{Br}}$ - Pd	2.450 (1)	C(7)-C(6)	1.406(10)
Br' Pd	$2.639(1)$	C(16)-C(6)	$1.505(16)$
$\mathrm{N}-\mathrm{Pu}$	$2.050(5)$	((8) (C 7)	$1.423(10)$
(c) -Pd	$2.121(7)$	(100 (${ }^{(10)}$	[388×10
(18)-N	1.2986)	(114) (19)	$1.390911)$
(19)-N	1.43609	C(11)-(10)	1.3830(11)
C(2) ((1)	1.510411)	(117)-(110)	$1.498(11)$
(13) $\ldots \mathrm{Cl} 2)$	$1.413(11)$	(12)-(11)	$1.360 \times 15)$
($(7)-(2)$	$1.417(11)$	C(13)-(12)	1.400(15)
(4) -(\%)	$1.411(13)$	(18)-(12)	1.542(12)
C(5) C(4)	$1.387(16)$	C(14)-(11.3)	1.404(11)
C(15)-C(4)	$1.305(12)$	(119$)-$ (14)	$1.518(13)$
C(6)-C(5)	$1.368(1.3)$		

rivatives [12], and also in the exo-metallacycles, if the imine adopts the E-form [4]. However, in the exometallacycles with the imine in the Z form, the methyne proton resonates downfield [3,13]. The shift can be explained by the paramagnetic anisotropy of the metal [14], showing a close approach of Pd and H atoms, or by a weak three-centre four-clectron interaction C $\mathrm{H} \cdots \mathrm{M}$, different from an agostic interaction [15]. The methyne proton resonance is shifted downfield in the new exo-metallacycles. showing that the imine is in the Z form.

2.3. Molecular structure of $2 d$

The crystal structure of $\mathbf{2 d}$ has been determined (Fig. 1). Crystallographic data and selected bond lengths and angles are listed in Tables 2-4, and atomic coordinates for non-hydrogen atoms are given in Table 5.

TABLEE 4. Bond angles (") for 2d

$\mathrm{Br}^{\prime}-\mathrm{Pd}-\mathrm{Br}^{2}$	86.3 (1)	C(16) C(6) (15)	$119.2(8)$
$\mathrm{N} \cdots \mathrm{Pd}-\mathrm{Br}$	177.20)	C(16)-C(6)-C(7)	$121.008)$
$\mathrm{N} \sim \mathrm{P} \mathrm{P}^{\prime}-\mathrm{Br}^{\prime}$	$96.2(2)$	(66$)-(7)-(12)$	$119.7(7)$
(c(1)-Pd-Br	$42.002)$	C(8)-C(7)-C12)	$120.507)$
(11) $-\mathrm{Pd}-\mathrm{Br}^{\prime}$	176.9(2)	((8) C(7) C(6)	$119.7(7)$
$C(1)-\mathrm{Pd}-\mathrm{N}$	85.66 (3)	((7) $^{(10)} \mathrm{C}(8)-\mathrm{N}$	124.3(7)
PD-BR-Pd ${ }^{\text {d }}$	$93.741)$	(110)-(9)-N	$117.4(7)$
($(8)-\mathrm{N}-\mathrm{Pd}$	126.265	(114)-C(9)- N	$119.9(7)$
(99) $-\mathrm{N}-\mathrm{Pd}$	$116.9(9)$	C(14)-C(9)-C(10)	122.687
(9)- $\mathrm{N}-\mathrm{C}(8)$	$116.9(6)$	C(11) C(10) C(9)	118.0(8)
C(2)-C(1)-Pd	111.3(5)	C(17)-C(10)-C(9)	121.077
C(3)-C(2)-C(1)	1196(8)	(117)-C(10)-C(1)	121.0(8)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(1)$	121.377	(12)-C(1)-C(10)	$121.4(9)$
$C(7) C(2)$ C(3)	119.1(7)	C(13)-C(12)-C(11)	:20.5(8)
$\mathrm{C}(4)-\mathrm{C} 3)-\mathrm{C}(2)$	120.3(9)	C(18) C(12) ((11)	$121.4(11)$
(65 -C(4)-C(3)	$118.5(8)$	C(18)-C(12)-C(13)	118.1(12)
$\mathrm{C}(15)-\mathrm{C}(4)-\mathrm{C}(3)$	$119.5411)$	C(14)-C(13)-C(12)	$119.8(9)$
C(15)-C(4)-C(5)	122.04)	C(13)-C(14)-C(9)	$117.6(8)$
C(6) C(5) (4)	122.548)	C(19) C(14) (9)	121.0(7)
	1198(8)	C(19)-C(14)-(13)	121.3(8)

TABLE 5. Final atomic coordinates $\left(\times 10^{4}\right)$ of $\mathbf{2 d} \quad\left(B_{\text {eq }}=\right.$ $\left.8 \pi^{2} / 3 \Sigma U_{i j} a_{i}^{*} a_{j}^{*} a_{i} a_{j}\right)$

	x	y	z	B_{eq}
Pd	$26723(3)$	$32228(4)$	$11258(3)$	$2.80(2)$
Br	$28454(5)$	$14970(6)$	$6743(6)$	$4.34(4)$
N	$2567(3)$	$4659(4)$	$1555(4)$	$2.96(23)$
$\mathrm{C}(1)$	$3030(5)$	$2948(6)$	$2508(5)$	$3.77(31)$
$\mathrm{C}(2)$	$3617(4)$	$3630(6)$	$2861(5)$	$3.60(32)$
$\mathrm{C}(3)$	$4247(5)$	$3232(7)$	$3317(5)$	$4.34(36)$
$\mathrm{C}(4)$	$4792(4)$	$3865(10)$	$3696(5)$	$4.94(44)$
$\mathrm{C}(5)$	$4682(5)$	$4879(9)$	$3652(6)$	$4.90(44)$
$\mathrm{C}(6)$	$4082(5)$	$5288(7)$	$3203(5)$	$4.18(36)$
$\mathrm{C}(7)$	$3541(4)$	$4671(6)$	$2792(5)$	$3.39(30)$
$\mathrm{C}(8)$	$2942(4)$	$5097(6)$	$2260(5)$	$3.25(28)$
$\mathrm{C}(9)$	$2035(4)$	$5241(5)$	$1017(5)$	$3.26(28)$
$\mathrm{C}(10)$	$2234(4)$	$5836(5)$	$294(5)$	$3.82(32)$
$\mathrm{C}(11)$	$1719(6)$	$6351(6)$	$-269(6)$	$4.63(41)$
$\mathrm{C}(12)$	$1038(6)$	$6279(7)$	$-127(7)$	$5.55(47)$
$\mathrm{C}(13)$	$839(5)$	$5680(7)$	$604(8)$	$5.01(43)$
$\mathrm{C}(14)$	$1347(4)$	$5163(6)$	$1206(6)$	$4.06(34)$
$\mathrm{C}(15)$	$5464(5)$	$3426(10)$	$4162(7)$	$6.63(55)$
$\mathrm{C}(16)$	$4025(7)$	$6397(9)$	$3123(9)$	$5.95(55)$
$\mathrm{C}(17)$	$2983(5)$	$5919(8)$	$130(6)$	$5.16(44)$
$\mathrm{C}(18)$	$465(8)$	$6857(9)$	$-752(10)$	$8.21(69)$
$\mathrm{C}(19)$	$1155(5)$	$4538(8)$	$2030(8)$	$5.71(51)$

The crystal structure consists of discrete molecules separated by van der Waals' distances. The complex is a centrosymmetric palladium dimer with two asymmetrically bridging bromine atoms. The two cyclopalladated ligands are transoid around the $\mathrm{Pd}_{2} \mathrm{Br}_{2}$ unit, as observed in analogous cyclopalladated dimers [9,10]. The asymmetry within the bridges arises from the different trans groups; the $\mathrm{Pd}-\mathrm{Br}$ bond trans to a benzylic carbon is longer ($2.639(1) \AA$) than that trans to nitrogen $(2.450(1) \AA)$, consistent with relatively large and small trans influcnces for benzylic carbon and imine nitrogen, respectively. The $\mathrm{Pd}_{2} \mathrm{Br}_{2}$ is planar, in contrast to some chloro-bridged cyclopalladated compounds, in which this ring is folded [9b,f].

The palladium atom is square-planar coordinated to benzylic carbon, imine nitrogen and the two bridging bromine atoms. The coordination plane shows some tetrahedral distortion, the deviations from the mean plane bcing $+0.033,+0.038,-0.033$ and $-0.047 \AA$ for $\mathrm{Br}, \mathrm{N}, \mathrm{Br}^{\prime}$ and Cl , respectively. The angles between adjacent atoms in the coordination sphere lie in the range $96.2(2)\left(\mathrm{N}-\mathrm{Pd}-\mathrm{Br}^{\prime}\right)$ to $85.6(3)^{\circ}(\mathrm{N}-\mathrm{Pd}-\mathrm{Cl})$. The smallest of these angles is that between the nitrogen and carbon atoms of the chelated ligand. The palla-dium-ligand distances are similar to those found for the analogous six-membered cyclometallated compound $\left[\mathrm{Pd}\left\{1-\mathrm{CH}_{2}-2-\left(\mathrm{CH}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{5}\right)-3,5-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\}\right.$ $\left.\mathrm{Br}\left(\mathrm{PPh}_{3}\right)\right][2 \mathrm{c}]$ and $\left[\mathrm{Pd}\left\{1-\mathrm{CH}_{2}-2-\left(\mathrm{CH}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{5}\right)-3,5-\right.\right.$ $\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\}(2,4$-lutidine $\left.)\left(\mathrm{PPh}_{3}\right)\right] \mathrm{ClO}_{4}$ [16], except that $\mathrm{Pd}-\mathrm{N}$ bond which is shorter in $2 \mathrm{~d}(2.050(5) \AA$) than in
the above cyclopalladated compounds (2.138(4) and $2.119(7) \AA$ respectively), but the relative trans influcnccs of PPh_{3} and brominc may cxplain this.

The six-membered metallacycle adopts a half-skewchair conformation, with the palladium atom out of the plane ($0.937 \AA$) defined by the other atoms. The sixmembered metallacycle also adopts a half-skew-chair conformation in [Pd $\left\{1-\mathrm{CH}_{2}-2-\left(\mathrm{CH}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{5}\right)-3,5-\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right] \mathrm{Br}\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\mathrm{Pd}\left(1-\mathrm{CH}_{2}-2-\left(\mathrm{CH}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{5}\right)\right.\right.$ -$\left.3,5-\mathrm{Mc}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right](2,4$-lutidine $)\left(\mathrm{PPh}_{3}\right) \mathrm{CCO}_{4}$, with the palladium atom out of the plane defined by the other atoms (1.325 and $1.086 \AA$ respectively [$2 \mathrm{c}, 16$].

3. Conclusion

The results described confirm the strong tendency of imines to form endo-cyclic compounds. This tendency (endo effect) is so strong that the oxidative addition to Pd^{0}, formed by reduction of the palladium(II) salts by imines forms endo-cyclic compounds by activation of a $\mathrm{C}-\mathrm{Cl}$ bond in preference to exo-cyclic compounds. Furthermore, the activation of C(aliphatic)-H bonds with formation of five-membered exo-metallacycles was not observed, in sharp contrast with the easy preparation of six-membered endo-metallacycles with C(aliphatic)-Pd bonds. Cyclometallation reactions of analogous imines derived from methyl ortho substituted anilines show that only endo-cyclic cyclometallated compounds are formed [17].

There is no clear explanation for this endo effect [3]. The bond distances and bond angles of analogous endo- and exo-cyclometallated compounds are similar [18] and in consequence it is not easy to relate the stability of such complexes to their structures. Recent mechanistic studies of the formation of cyclometallated platinum compounds of N-benzylidencamines show that the entropy could be responsible for the favoured formation of endo-compounds [5]. Mechanistic studies of the cyclometallation of ortho-arylphenoxide ligands at Group 5 metal atoms suggest that rotation of the aryl ring to be metallated into a coplanar conformation in which the $\mathrm{C}-\mathrm{H}$ bond about to be activated is being brought close to the metal contributes to cyclometallation reactions [19]. The strong tendency of imines to form endo-cyclic compounds may be related to restricted rotation around the $\mathrm{C}=\mathrm{N}$ bond, which favours the approach of the $\mathrm{C}-\mathrm{X}$ bond to be metallated to the coordination plane, previous to the metallation.

4. Experimental details

Routine NMR spectra were obtained on a Bruker WP 80SY spectrometer $\left({ }^{1} \mathrm{H}, 80.13 \mathrm{MHz} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}, 32.8\right)$.
${ }^{1} \mathrm{H}$ spectra (200 MHz) were obtained on a Varian XL-200 spectrometer. IR spectra were recorded as KBr discs on a Perkin-Elmer 1330 spectrometer. Microanalyses were performed by the Institut de Química Bio-Orgànica de Barcelona (CSIC).

4.1. Materials and synthesis

Solvents were dried and distilled before use. Imines were prepared by literature procedures [20].

4.1.1. Compounds $2 a, b, d, f$

A stirred suspension of $\mathrm{Pd}(\mathrm{AcO})_{2}(1 \mathrm{mmol}, 224 \mathrm{mg})$ in anhydrous acetic acid (30 ml) was treated with an excess of inine la, $\mathbf{l b}, \mathbf{1 d}$ or If (2 mmol) and the mixture was refluxed for 3 h (1a, If) or for 2 h ($\mathbf{1 b}, \mathbf{I d}$). The solution was filtered to eliminate the small amount of black palladium formed. The filtrate was coneentrated in vacuo and the residue was dissolved in ethanol and treated with an excess of $\mathrm{LiBr}(2 \mathrm{mmol}, 173 \mathrm{mg})$ at room temperature for 1 h . The solids obtained were filtered and recrystallized from chloroform/methanol, to afford compounds 2 , as yellow solids, in 6090% yield.

$$
\left.\mid P d\left\{2-\left(H C=N-2^{\prime}, 4^{\prime}, 6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-5-\mathrm{Cl}_{6} \mathrm{H}_{3}\right\} \mathrm{Br}\right\}_{2}
$$ (2a). Yield 708 mg (80%). Anal. Found: C, 43.7; H, 3.4; $\mathrm{N}, 3.2 . \mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Pd}_{2}$ calcd.: C .43 .37 ; H , 3.42 ; N, 3.16%.

lPd\{2-(HC=N-2', ' $\left.\left.\left.^{\prime}, 6^{\prime}-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-3-\mathrm{ClC}_{6} \mathrm{H}_{3}\right\} \mathrm{Br}\right]_{2}$ (2b). Yield 532 mg (60%). Anal. Found: C. 43.4; II, 3.3; N, 3.0. $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Pd}_{2}$ calcd.: C. 43.37; II, 3.42; N, 3.16\%.
/Pd\{I-CH2-2-(CH=N-2', $\left.4^{\prime}, 6^{\prime}-\mathrm{Me}_{3} \mathrm{C}_{8} \mathrm{H}_{2}\right)-3,5-$ $\left.\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{2}\right\} \mathrm{Br} 7_{2}$ (2d). Yield 766 mg (85%). Anal. Found: C, 50.7; H, 4.8; N, 3.0. $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{Pd}_{2}$ calcd.: C, 50.62 ; II, $4.93 ;$ N. 3.11%.
$/ \mathrm{Pd}\left\{2-\left(\mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}-2^{\prime}, 6^{\prime}-\mathrm{CI}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)-3-\mathrm{ClC}_{6} \mathrm{H}_{3}\right\} \mathrm{Br} /_{2}$ (2f(exo)). Yield $628 \mathrm{mg}(65 \%)$. Anal. Found: C, 34.8; $\mathrm{H}, 1.7 ;$ N. 2.8. $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{Pd}_{2}$ calcd.: $\mathrm{C}, 34.75: \mathrm{H}$, $1.88 ; \mathrm{N}, 2.89 \%$.

4.I.2. Compounds $2 c$, $2 e$ (exo), $2 e(e n d o$)

A stirred suspension of $\mathrm{Pd}(\mathrm{AcO})_{2}(1 \mathrm{mmol}, 224 \mathrm{mg})$ in anhydrous acetic acid (30 ml) was treated with an excess of imine 1c or 1 e (2 mmol) and the mixture was heated under reflux for 2 h (1e) or for 30 min (1e). The solution was filtered and the solid obtained was recrystallized from chloroform/methanol to afford 2 e or $2 \mathrm{e}($ endo $)$. Compound $2 \mathrm{e}($ exo $)$ was obtained from the solution, by concentration in wacuo and reaction of the residue obtained with an excess of LiBr (2 mmol. 174
mg) in ethanol, at room temperature for 1 h . The solid obtained was filtered and recrystallized from chloroform/methanol to afford $2 \mathrm{e}(\mathrm{exo}$).
 (2c). Yield $200 \mathrm{mg}(25 \%$). Anal. Found: C. $48.3 ; \mathrm{H}$, 3.8: N, 3.4. $\mathrm{C}_{32} \mathrm{H}_{3.6} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{Pd}_{2}$ calcd.: C. 48.21 ; H, 3.80; $\mathrm{N}, 3.51 \%$.
$\left\{\mathrm{Pd}\left(2-\mathrm{KHC}=\mathrm{NCH}-\left(2^{\prime}-\mathrm{MeC}_{2} \mathrm{H}_{4}\right)\right\}-3-\mathrm{ClC}_{6} \mathrm{H}_{3}\right) \mathrm{Cl}_{2}$ (2e(endo)). Yield $55 \mathrm{mg}(7 \%)$. Anal. Found: C, 46.5 ; $\mathrm{H}, 3.2 ; \mathrm{N}, 3.5 \mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Cl}_{1} \mathrm{~N}_{2} \mathrm{Pd}$, calcd.: C. $46.84 ; \mathrm{H}$, $3.41: \mathrm{N}, 3.64 \%$.
[$\left.\mathrm{Pd}\left\{2-\left(\mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}-\mathrm{Z}^{\prime}, \mathrm{O}^{\prime}-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)-3-\mathrm{MeC}_{6} \mathrm{H}_{3}\right\} \mathrm{Br}\right]_{2}$ (2e(cxo)). Yield 510 mg (55%). Anal. Found: C, 38.6 ; $\mathrm{H}, 2.7$; N, 3.1. $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{Pd}$, caled.: $\mathrm{C}, 38.87 ; \mathrm{H}$, 2.61 ; N, 3.02\%

4.I.3. $\mathrm{P} d \mathrm{dBr}(\mathrm{C} \mathrm{N}) P \mathrm{Ph}_{3} /(3 a-f)$

A stirred suspension of $2(0.5 \mathrm{mmol}$) in acetone (30) $\mathrm{ml})$ was treated with $\mathrm{PPh}_{3}(1 \mathrm{mmol}, 262 \mathrm{mg})$ and, if the cyclonctallated starting material was $2 \mathbf{c}$ or $2 \mathbf{e}($ endo $)$, LiBr (2 mmol. 174 mg) was added to the reaction mixture. The mixture was heated under reflux for 1 h , and then filtered. The filtered solution was concentrated in racuo and the solid obtained after addition of ether was recrystallized from chloroform/methanol to afford 3 in $80-90 \%$ yield.
lPd\{2-(HC=N-2, $\left.4^{\prime} 6^{\prime}-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-5-\mathrm{ClC}_{0} \mathrm{H}_{3}{ }^{\prime} \mathrm{Br}$ $\left(P P h_{3}\right) /(3 a)$. Yicld 634 mg (90%). Anal. Found: C, $57.6 ; \mathrm{H}, 4.3 ; \mathrm{N}, 1.8 . \mathrm{C}_{3.4} \mathrm{H}_{34} \mathrm{BrCINPP}$ calcd.: $\mathrm{C}, 57.89$. H, 4.29: N, 1.98%.
$1 \mathrm{Pd}\left\{2-\left(\mathrm{HC}=\mathrm{N}-2^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-3-\mathrm{ClC}_{6} \mathrm{H}_{3} / \mathrm{Br}\right.$ ($\mathrm{PP} / \mathrm{h}_{3}$)/ (3b). Yield 600 mg (85%). Anal. Found: C, $57.6 ; \mathrm{H}, 4.3, \mathrm{~N}, 1.9 . \mathrm{C}_{34} \mathrm{H}_{30} \mathrm{BrCINPPd}$ caled.: C, 57.89 . $\mathrm{H}, 4.29 ; \mathrm{N}, 1.98 \%$
/Pd\{2-(HC=N-2', 4', $\left.\left.6^{\prime}-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-3-\mathrm{Cl}_{6} \mathrm{C}_{3}\right\} \mathrm{Br}$ (PPh,) (3 c) Yield $505 \mathrm{mg}(80 \%$). Anal. Found: C, 57.7, M, 4.4; N, 2.0. C $3 . \mathrm{H}_{30} \mathrm{BrCINPPd}$ caled.: C. 57.89 ; H, 4.29; N, 1.98 i.
|Pd\{l-CH2-2-(CH=N. $\left.2^{\prime}, 4^{\prime}, 6^{\prime}-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)-3,5-\mathrm{Me} e_{2}$ $\left.\mathrm{C}_{6} \mathrm{H}_{2}\right\} \mathrm{Br}\left(\mathrm{PPh}_{3}\right) /$ (3 d) Yield 606 mg (855°). Anal. Found: C. 62.3: H, 5.2: N, 1.8. C $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{BrNPPd}$ calcd.: C. 62.32 : H, $5.24 ; \mathrm{N}, 1.96 \%$
/Pd(2-\{ $\left.\left.\left.\mathrm{HC}=\mathrm{NC} \mathrm{H}_{2}-12^{\prime}-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)-3-\mathrm{ClC}_{6} \mathrm{H}_{3}\right\}\right) \mathrm{Br}$ (PPh_{3}) $)$ (3elende)) Xield 550 mg (80%). Anal. Found: C. 57.6 : H, 4.0; N. 1.9. $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{BrClNPPd}$ calcd.: C, 57.33 : II , 4.09: N, 2.02 C .
$\left.\int \mathrm{Pd} \bar{d} 2-\left(\mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}-2^{\prime}, 6^{\prime}-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)-3-\mathrm{MeC}_{6} \mathrm{H}_{3}\right\} \mathrm{Br}$ $\left.\left(P P h_{3}\right)\right]$ (3 e(exo)). Yield $540 \mathrm{mg}(75 \%)$. Anal. Found: C, $54.8 ; \mathrm{H}, 3.5 ; \mathrm{N}, 1.9 . \mathrm{C}_{33} \mathrm{H}_{27} \mathrm{BrCl}_{2} \mathrm{NPPd}$ calcd.: C , 54.61; H, 3.76; N, 1.93\%.
[$\mathrm{Pd}\left\{2-\left(\mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}-2^{\prime}, 6^{\prime}-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)-3-\mathrm{ClC}_{6} \mathrm{H}_{3}\right\} \mathrm{Br}$ $\left.\left(\mathrm{PPh}_{3}\right)\right]$ (3f(exo)). Yield $595 \mathrm{mg}(80 \%)$. Anal. Found: C, $51.5 ; \mathrm{H}, 3.2 ; \mathrm{N}, 1.8 . \mathrm{C}_{32} \mathrm{H}_{24} \mathrm{BrCl}_{3} \mathrm{NPPd}$ calcd.: C , 51.50; H, 3.25; N, 1.88\%.

4.2. Data collection

A prismatic crystal $\left(0.07 \times 0.07 \times 0.1 \mathrm{~mm}^{3}\right)$ was selected and mounted on an Enraf-Nonius CAD4 diffractometer. Unit cell parameters were determined from automatic centring of 25 reflections ($12 \leq \theta \leq 21^{\circ}$) and refined by the least-squares method. Intensities were collected with graphite monochromatized Mo $\mathrm{K} \alpha$ radiation, using the $\omega-2 \theta$ scan technique; 5805 reflections were measured in the range $2 \leq \theta \leq 30 . R_{\text {int }}$ (on $F)=0.009,2678$ of which were assumed as observed applying the condition $I \geq 2.5 \sigma(I)$. Three reflections were measured every 2 h as orientation and intensity controls, but significant intensity decay was not observed. Lorentz polarization, but not absorbtion, corrections were made.

4.3. Structure solution and refinement

The structure was solved by Patterson synthesis, using the shelxs computer program [21] for crystal structure determination and refined by the full-matrix least-squares method, with the shelx 76 computer program [22]. The function minimized was $\sum w\left[\left|F_{0}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right]^{2}$, where $\boldsymbol{w}=\left(\sigma^{2}\left(F_{\mathrm{v}}\right)+0.0044\left|F_{\mathrm{o}}\right|^{2}\right)^{-1} . f, f^{\prime}$ and $f^{\prime \prime}$ were taken from International Tables of X-Ray Crystallography [23]. The positions of 15 H atoms was computed and the remainder were located from a difference synthesis, all refined with an overall isotropic temperature factor using a riding model for computed hydrogen atoms. The final R factor was 0.052 ($R_{\mathrm{w}}=$ 0.056) for all reflections observed. The number of refined parameters was 221 . Max. shift/e.s.d. $=0.06$, Maximum and minimum peaks in final difference synthesis were 0.3 and $-0.3 \mathrm{e}^{\AA} \AA^{-3}$, respectively.

5. Supplementary material available

Tables of hydrogen coordinates, structure factors and thermal parameters are available from the authors.

Acknowledgments

We thank the DGICYT (Grant No. PB 89-0254) for financial support, Johnson Matthey Inc. for a loan of palladium chloride, Dr. Joan Albert for helpful sugges-
tions and Ms. Gemma Navarro for the preparation of some starting materials.

References

1 (a) M.I. Bruce, Angew. Chem., Int. Ld. Engl., 16 (1977) 73; (b) G.R. Newkome, W.E. Puckett, W.K. Gupta and G.E. Kiefer, Chem. Ree., 86 (1986) 451; (c) I. Omae, Coord. Chem. Rev., 83 (1988) 137; (d) V.V. Dunina, O.A. Talevskaya and V.M. Potatov, Russ. Chem. Rel., 57 (1988) 250; (e) A.D. Ryabov, Chem. Reu., 90 (1990) 403.

2 (a) Y. Fuchita, K. Hiraki and T. Uchiyama, J. Chem. Soc., Dalton Trans., (1983) 897; (b) G.R. Newkome, G.E. Kiefer, Y.A. Frere, M. Onishi, V.K. Gupta and F.R. Fronczek, Organometallics, 5 (1986) 348; (c) J. Albert, J. Granell, J. Sales, X. Solans and M. Font, Organometallics, $5(1986) 2567$; (d) K. Hiraki, M. Nakashima and T. Uchiyama, J. Organomet. Chem., 428 (1992) 249.
3 J. Albert, R.M. Ceder, M. Gómez, J. Granell and J. Sales, Organometallics, 11 (1992) 1536.
4 J. Albert, J. Barro and J. Granell, J. Organomet. Chem., 408 (1991) 115.

5 M. Crespo, M. Martínez, J. Sales, X. Solans and M. Font-Bardia, Organometalics, 11 (1992) 1288.
6 M. Crespo, M. Martínez and J. Sales, J. Chem. Soc., Chem. Commun., (1992) 822.
7 M. Pfeffer, E. Wehman and G. van Koten, J. Organomet. Chem., 282 (1985) 127.
8 J. Granell, J. Sales, J. Vilarrasa, J.P. Declerq, G. Germain, C. Miravitlles and X. Solans, J. Chem. Soc., Dalton Trans., (1983) 2441.

9 (a) A. Albinati, P.S. Pregosin and R. Rüedi, Helv. Chim. Acta, 68 (1985) 2046; (b) J. Selbin, K. Abboud, S.F. Watkins, M.A. Gutiérrez and F.R. Fronezek, J. Organomet. Chem., 241 (1983) 259; (c) E.C. Constable, A.M.W. Cargill Thompson, T.A. Leese, D.F.G. Reese and D.A. Tocher, Inorg. Chim. Acta, 182 (1991) 93; (d) A. Crispini, G. De Munno, M. Ghedini and F. Neve, J. Organomet. Chem., 427 (1992) 409; (e) G. Balavoine, J.C. Clinet, P. Zerbib and K. Boubeukur, J. Organomet. Chem., 389 (1990) 259; (f) A.G. Constable, W.S. McDonald, L.C. Sawkins and B.L. Shaw, J. Chem. Soc., Dalton Trans., (1980) 1992; (g) B. Galli, F. Gasparini, B.E. Mann, L. Maresca, G. Natile, A.M. ManottiLanfredi and A. Tiripicchio, J. Chem. Soc., Dalton Trans., (1985) 1155.

10 J.M. Vila, M. Gayoso, M.T. Pereira, A. Romar and J.J. Fernández, J. Organomet. Chem., 401 (1991) 385.

11 R.F. Heck, Org. React., 17 (1982) 345.
12 (a) H. Onoue and I. Moritani, J. Organomet. Chem., 43 (1972) 431; (b) J. Granell, D. Sainz, J. Sales, X. Solans and M. Font, J. Chem. Soc., Dalton Trans., (1986) 1785.
13 J. Albert, M. Gómez, J. Granell, J. Sales and X. Solans, Organometallics, 9 (1990) 1405.
14 R.G. Miller, R.D. Stauffer, D.R. Fahey and D.R. Parnell, J. Am. Chem. Soc., 92 (1970) 1511.
15 (a) A. Albinati, C. Arz and P.S. Pregosin, Inorg. Chem., 26 (1987) 508; (b) A. Albinati, C.G. Ankin, F. Ganazolli, H. Rüegg and P.S. Pregosin, Inorg. Chem., 26 (1987) 503; (c) L. Brammer, J.M. Charnock, P.L. Goggin, R.J. Goodfellow, A.G. Orpen and T.F. Koetzle, J. Chem. Soc., Dalton Trans., (1991) 1789.
16 R. Bosque, J. Granell, J. Sales, M. Font-Bardía and X. Solans, J. Organomet. Chem., in press.
17 (a) J.M. Vila, M.T. Pereira, A. Suarez, E. Gayoso and M. Gayoso, Synth. React. Inorg. Met.-Org. Chem., 16 (1986) 499; (b) J.M. Vila, M.T. Pereira, E. Gayoso and M. Gayoso, Transition Met. Chem.,

11 (1986) 342; (c) J.M. Vila, M.T. Pereira, A. Suarez, L. Gayoso and M. Gayoso. Synth. React. Vnorg. Met.-Org. Chem., (1988) 47; (d) M.T. Pereira, J.M. Vila, A. Suarez, F. Gayoso and M. Gayoso, Gazz. Chim. Itat. I/S (1988) 783.
18 P.W. Clark, S.F. Dyke, G. Smith and C.H.L. Kennard, J. Orgunomet. Chem., 330 (1987) 447.
19 R.W. Chesnut. G.G. Jacoh. J.S. Yu, P.E. Fanwick and I.P. Rothwell. Organometalics, 10 (1991) 321.

20 L.A. Bigelow and II. Eatough, in A.II. Blatt (ed.), Organic Syntheses, Vol. 1, Wiley, New York, 1944, p. 80.
21 G.M. Sheldrich. Acta Crwatlogr. Sect. A, 46 (1990) 467.
22 GM. Sheldrick, sht x. A Computer Program for Costal Structure Detemination, 'inversity of Cambridge. Cambridge. UK. 1976.

23 Internutional Tables of X-Ray Costallograpiby. Vol. IV. Kynoch Press, Birmingham. UK. 1974, pp. 99. 100. 149.

[^0]: Correspondence to: Dr. J. Granell.

